LCS problem
Last updated
Last updated
longest-common-subsequence differs from problem of finding the longest common substring; and it has wide applications such as diff utility and bioinformatics.
The problem is formally defined as follows: define two strings for example abcgf and achfe, find the same longest subsequence from both of them. A subsequence is composed of characters in same relative order within the string but not necessarily being contiguous. Strings like ac, bc, bf, abf are all subsequences of string abcgf.
From all the subsequences of strings abcgf and achfe, the common ones are a, ac, cf, c, f, acf, the longest common subsequence is acf.
Define two sequences X[0..m-1] and Y[0..n-1]. And L(X[0..m-1], Y[0..n-1]) be the LCS of the two sequences X and Y. LCS problem can be solved in dynamic programming for its satisfaction of two important factors:
Optimal Substructure
If a problem has an optimal solution and its sub-problems also have optimal solutions, then we say this problem has optimal substructure.
In the above example, sequence X is abcgf and sequence Y is achfe; Then, if the last characters of X and Y match we only need to find out if the preceding characters match: L(X[0..m-1], Y[0..n-1]) = 1 + L(X[0..m-2], Y[0..n-2]).
If the last characters of X and Y do not match, we need to find out the maximal LCS between L(X[0..m-2], Y[0..n-1]) and L(X[0..m-1], Y[0..n-2]).
Overlapping Subproblems
In the recursion of finding common sequences, there are overlapping function calls; they are called overlapping subproblems:
In the above example, finding the LCS of X and Y is broken down into finding L(abcgf, achf) and L(abcg, achfe), the next level recursions of both have overlapping subproblems: L(abcg, achf). By memoization, the computing cost can be saved significantly (from exponential time to polynomial time).
Then, the following formula is given for this problem to be solved in dynamic programming:
Figure 1. LCS Formula
X of size m, Y of size n
The time and the space complexity are both Ο(n × m).